
BIO / MBB / MAT 355 Introduction to Computational Molecular Biology

Lecture 06
Pairwise Sequence Alignment - 2
Sep 13, 2021

Image by susannp4 from Pixabay

https://pixabay.com/users/susannp4-1777190/
https://pixabay.com/photos/horses-pair-wild-horses-animals-2904536/

What we have
learned

● Sequence alignment

● Sequence similarity, Hamming
distance

● Point mutations: substitution,
insertion, and deletion

● Site states: match, mismatch,
and gap

● Alignment score

Algorithm
Needleman-Wunsch
global alignment algorithm

Computational complexity

Dynamic programming

Math
Matrix representation of
pairwise alignment

Practice
Perform N-W alignment
by hand

Pairwise
sequence
alignment

Learning
goals
(today and next
class)

Code
Python implementation of
N-W algorithm

Matrix as nested list

While loop

An alignment task requires --

Seq 2

ATCGTA

Seq 1

ACGCGT

● Two sequences ● Scoring scheme

Scoring

Match 1

Mismatch 0

Gap -1

Score: 1

ACGCGT
|
ATCGTA

Compare possible alignments (the intuitive way)

Score: 2

ACGCGT-
| |||
AT-CGTA

Score: 0

A-CGCGT-
| || |
ATCG--TA

● Propose a few possible alignments, calculate their scores, and find the best one.

Winner

Mission: Move bases from sequences to alignment

Seq 2

ATCGTA

Seq 1

ACGCGTAlignment

ACGCGT
ATCGTA

● In each round, for each sequence,
● You can either move the left-most base to the alignment,
● Or not move anything (which will leave a gap in the alignment)

Round 1: Move one base from both sequences

Seq 2

ATCGTA

Seq 1

ACGCGTScore: 1

A
A

● And they are a match (A-A).

● Alignment score + 1.

Round 2: Move one base from both sequences

Seq 2

ATCGTA

Seq 1

ACGCGTScore: 1

AC
AT

● But they are a mismatch (C-T).

● Alignment score + 0.

Round 3: Move a base from Seq 1, but not from Seq 2

Seq 2

ATCGTA

Seq 1

ACGCGTScore: 0

ACG
AT-

● Now there is a gap.

● Alignment score - 1.

● If we consider this as a process of Seq 1 evolving into Seq 2, then this is a deletion.

● Oppositely, it will be an insertion if we move from Seq 2 but not from Seq 1.

Let’s keep going until all bases are moved into the alignment

Seq 2

ATCGTA

Seq 1

ACGCGTScore: 1

ACGCGT-
AT-CGTA

● Round 4, 5, 6: Match.

● Round 7: Insertion.

Present the entire alignment protocol

The procedures and corresponding scores are:

● match - mismatch - deletion - match - match - match - insertion

● 1 + 0 - 1 + 1 + 1 + 1 - 1 = 2

If we code moving as “Y”, not moving as “N”, we have:

In each time, we can only explore one possible alignment.

Y Y Y Y Y Y N

Y Y N Y Y Y Y

Seq 1

Seq 2

Matrix representation of pairwise sequence alignment

0

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

- A T C G C A

-

A

C

G

C

G

T

Matrix representation of pairwise
sequence alignment

● Step-by-step alignment
starts from top-left and
ends at bottom-right.

● Each step is represented
by moving from a cell to its
adjacent cell.

Sequence 2 (columns)

Se
qu

en
ce

 1
 (r

ow
s)

Start from
left side

Se
q

1

Seq 2
Each step is represented by moving
from a cell to its adjacent cell

Three possible moving directions:

● (diagonal): Take a base from
both seqs, i.e., a (mis)match.

● (down): Take from Seq 1 but
not Seq 2, i.e., a deletion.

● (right): Take from Seq 2 but
not Seq 1, i.e., an insertion.

- A T C G C A

-

A

C

G

C

G

T

Se
q

1

Seq 2
Each step is represented by moving
from a cell to its adjacent cell

For examples:

● Is a match (A vs A)

● Is a deletion (C vs -)

● Is a mismatch (G vs T)

● Is an insertion (- vs C)

- A T C G C A

-

A

C

G

C

G

T

Se
q

1

Seq 2
Alignment is represented by the
moving path

● These four arrows represent the
following alignment:

A C G -

A - T C

- A T C G C A

-

A

C

G

C

G

T
● Our goal is to find a path from top

left to bottom right, which suffice...

Accumulative alignment scores are
noted in the cells

0

- A T C G C A

-

A

C

G

C

G

T

● Start from the top left cell, with
value 0 (because nothing has
happened yet).

Scoring

Match 1

Mismatch 0

Gap -1

Fill the first row with accumulative
gap costs

0 -1 -2 -3 -4 -5 -6

- A T C G C A

-

A

C

G

C

G

T

● Each right arrow represents an
insertion (with score -1).

Fill the first column in the same way

0

-1

-2

-3

-4

-5

-6

-1 -2 -3 -4 -5 -6

- A T C G C A

-

A

C

G

C

G

T

● Each down arrow represents a
deletion (with score -1).

Now work on the matrix body

0

-1

-2

-3

-4

-5

-6

-1 -2 -3 -4 -5 -6

- A T C G C A

-

A

C

G

C

G

T

● Always from top / left to bottom /
right.

There are three ways to move to this cell

0

-1

-1

- A

-

A

0

-1

-1

- A

-

A

0

-1

-1

- A

-

A

From top From left From top left
(diagonal)

Deletion (-1) Insertion (-1) Match (+1)

Add the current score to the source cell

0

-1

-1

A

A

0

-1

-1

A

A

0

-1

-1

A

A

Deletion (-1) Insertion (-1) Match (+1)This step

Accumulative -1 - 1 = -2 -1 - 1 = -2 0 + 1 = 1

● Which accumulative score is the largest? Winner

Keep the maximum score from the
three directions

0

-1

-2

-3

-4

-5

-6

-1

1

-2 -3 -4 -5 -6

- A T C G C A

-

A

C

G

C

G

T

● Therefore we note the cell with the
largest score (1) (from diagonal
direction).

Let’s try another one

0

-1

-2

-3

-4

-5

-6

-1

1

-2 -3 -4 -5 -6

- A T C G C A

-

A

C

G

C

G

T

● What will be the score of this cell
(and from which direction)?

Determine maximum score and direction in the same way

-1

1

-2

T

A

-1

1

-2

T

A

-1

1

-2

T

A

Deletion (-1) Insertion (-1) Mismatch (+0)This step

Accumulative -2 - 1 = -3 1 - 1 = 0 -1 + 0 = -1

Winner

Therefore, this cell should be

0

-1

-2

-3

-4

-5

-6

-1

1

-2

0

-3 -4 -5 -6

- A T C G C A

-

A

C

G

C

G

T

● We will keep doing this until we fill
the entire matrix.

Fill the entire matrix with scores and
directions

0

-1

-2

-3

-4

-5

-6

-1

1

0

-1

-2

-4

-2

0

1

0

-1

-2

-3

-3

-1

1

1

1

0

-1

-4

-2

0

2

1

2

1

-5

-3

-1

1

3

2

2

-6

-4

-2

0

2

3

2

- A T C G C A

-

A

C

G

C

G

T

-3

● We will keep doing this until we fill
the entire matrix.

○ Note: For each cell, there could
be one or two or three directions
that achieve the same maximum
score.

Now, we will determine which path
gives the maximum overall score

- A T C G C A

-

A

C

G

C

G

T

● Starting from the bottom right cell.

Trace back through arrows until
reaching top left

- A T C G C A

-

A

C

G

C

G

T

● This is the path that represents the
best alignment!

● In this case, the best alignment is:

A - C G C G T

| | | |

A T C G C A -

There could be more than one best
alignment (path)

- A T C G C A

-

A

C

G

C

G

T

● They have the same alignment
score.

A - C G C G T

| | | |

A T C G C A -

A - C G C G T

| | | |

A T C G C - A

It is practice time

It is practice time

Seq 2

ATTCG

Seq 1

ATCG

● Two sequences ● Scoring system

Scoring

Match 1

Mismatch 0

Gap -1

0

-1

-2

-3

-4

-1 -2 -3 -4 -5

- A T T C G

-

A

T

C

G

● Alignment matrix

But I can’t draw arrows in Excel!

● We need to find an Excel computer-friendly way to handle the matrix.
● How about we use two matrices, one for scores and the other for directions?

0

-1

-2

-3

-4

-1 -2 -3 -4 -5

- A T T C G

-

A

T

C

G

- A T T C G

-

A

T

C

G

Convert arrows into direction codes

U

U

U

U

L

D

UD

L

LD

D

L L L

- A T T C G

-

A

T

C

G

In each cell, use letter code(s) to represent the source cell(s):

● L (left to right), U (upper to lower), D (diagonal) (upper-left to lower-right)

- A T T C G

-

A

T

C

G

We can effectively work on the two matrices

0

-1

-2

-3

-4

-1 -2 -3 -4 -5

- A T T C G

-

A

T

C

G

U

U

U

U

L L L L L

- A T T C G

-

A

T

C

G

Score matrix Traceback matrix

● Now, let’s get rolling!

Here is the outcome

0

-1

-2

-3

-4

-1

1

0

-1

-2

-2

0

2

1

0

-3

-1

1

2

1

-4

-2

0

2

2

-5

-3

-1

1

3

- A T T C G

-

A

T

C

G

U

U

U

U

L

D

U

U

U

L

L

D

U

U

L

L

LD

D

UD

L

L

L

D

D

L

L

L

L

D

- A T T C G

-

A

T

C

G

Score matrix Traceback matrix

● Did you get these results?

So the best alignment is (are) --

U

U

U

U

L

D

U

U

U

L

L

D

U

U

L

L

LD

D

UD

L

L

L

D

D

L

L

L

L

D

- A T T C G

-

A

T

C

G

Traceback matrix

Best 1

A T - C G
A T C C G

Best 2

A - T C G
A T C C G

What you just did is called the --

● The inventors: Saul B.
Needleman and Christian
D. Wunsch (1970)

Needleman-Wunsch algorithm

● It is an algorithm, not just an equation.
It aims to resolve a problem using
computer

What is the N-W algorithm for?

● Optimal: Find the alignment(s)
that have the highest score.

Optimal global alignment

● Global alignment: Align the entire
sequences (not just parts of them).

● This is called an optimization problem
(finding the best solution)

An algorithm resolves a problem
using computer code

● It is a sequence of computer-
implementable instructions (i.e., a
program).

● It is well-defined, unambiguous and
specific.

● It should be efficient (i.e., problem
can be resolved in a reasonable
amount of time using a reasonable
amount of memory space)

● As compared to a mathematical
equation.

Why the N-W algorithm has to be so complicated?

0

-1

-2

-3

-4

-5

-6

-1

1

0

-1

-2

-4

-2

0

1

0

-1

-2

-3

-3

-1

1

1

1

0

-1

-4

-2

0

2

1

2

1

-5

-3

-1

1

3

2

2

-6

-4

-2

0

2

3

2

- A T C G C A

-

A

C

G

C

G

T

-3

Y Y Y Y Y Y N

Y Y N Y Y Y Y
vs

● Or if it’s really complicated if you ask a
computer?

The naive method is prohibitively slooooooow

Y Y Y Y Y Y N

Y Y N Y Y Y Y

● Theoretically, we can generate ALL possible alignments, and determine the highest
scored one, but...

● For each alignment site, there are three options: YY, YN, NY.

● So for an alignment of length n, there are roughly 3n combinations, which is
exponential.

PS: the actual total number of possible alignments of two sequences of n and m bases is (m+n)!/m!*n!

● What if we have 1000 sites?

Whereas the N-W algorithm only needs...

● There are a total of n × m cells to
calculate.

● Which is quadratic (meaning
“square”)

0

-1

-2

-3

-4

-5

-6

-1 -2 -3 -4 -5 -6

- A T C G C A

-

A

C

G

C

G

T

m

n

A quadratic function grows slowly compared to an exponential one

y = x 2 y = e x

Quadratic Exponential Both

● Therefore, a quadratic algorithm is usually much cheaper (i.e., more efficient) than an
exponential algorithm, when the input size is beyond 1-2 digits.

Computational complexity: the big O notion

The N-W algorithm has:

● Time complexity: O(nm)

○ Computer runtime to complete the
calculation.

● Space complexity: O(nm)

○ Computer memory needed during the
calculation.

0

-1

-2

-3

-4

-5

-6

-1 -2 -3 -4 -5 -6

m

n

Why is the N-W algorithm so good?

● Because it breaks down the whole
problem into multiple related, simpler
sub-problems.

○ Here sub-alignments (cells).

● Therefore, we only need to find the
optimal solution for each sub-problem.

● Then we synchronize the sub-solutions
to get the global optimal solution.

● This strategy is called dynamic
programming.

0

-1

-2

-3

-4

-5

-6

-1

1

0

-1

-2

-4

-2

0

1

0

-1

-2

-3

-3

-1

1

0

1

0

-1

-4

-2

0

2

1

2

1

-5

-3

-1

1

3

2

2

-6

-4

-2

0

2

3

2

- A T C G C A

-

A

C

G

C

G

T

-3

Summary

● Matrix representation of
pairwise alignment

● Needleman-Wunsch
algorithm

● Computational complexity
and dynamic programming

Next class

Python implementation of the
Needleman-Wunsch global alignment algorithm

