

Sep 13, 2021

- Sequence alignment
- Sequence similarity, Hamming distance

What we have learned

- Point mutations: substitution, insertion, and deletion
- Site states: match, mismatch, and gap
- Alignment score

Pairwise sequence alignment

Learning goals

(today and next class)

Math

Matrix representation of pairwise alignment

Algorithm

Needleman-Wunsch
global alignment algorithm
Computational complexity
Dynamic programming

Practice

Perform N-W alignment by hand

Code

Python implementation of $\mathrm{N}-\mathrm{W}$ algorithm

Matrix as nested list
While loop

An alignment task requires --

- Two sequences
- Scoring scheme

Seq 1
 ACGCGT
 Seq 2
 ATCGTA

Scoring
Match 1 Mismatch 0 Gap -1

Compare possible alignments (the intuitive way)

- Propose a few possible alignments, calculate their scores, and find the best one.

Score: 1
ACGCGT

ATCGTA

Score: 2
ACGCGT-

AT-CGTA

Score: 0

Mission: Move bases from sequences to alignment

- In each round, for each sequence,
- You can either move the left-most base to the alignment,
- Or not move anything (which will leave a gap in the alignment)

Alignment
 ACGCGT ATCGTA

Seq 1

ACGCGT

Seq 2
ATCGTA

Round 1: Move one base from both sequences

- And they are a match (A-A).
- Alignment score + 1 .

Round 2: Move one base from both sequences

- But they are a mismatch (C-T).
- Alignment score + 0 .

Round 3: Move a base from Seq 1, but not from Seq 2

- Now there is a gap.
- Alignment score - 1 .

Score: 0
 ACG AT-

Seq 1

ACGCGT

Seq 2
ATCGTA

- If we consider this as a process of Seq 1 evolving into Seq 2, then this is a deletion.
- Oppositely, it will be an insertion if we move from Seq 2 but not from Seq 1.

Let's keep going until all bases are moved into the alignment

- Round 4, 5, 6: Match.
- Round 7: Insertion.

Present the entire alignment protocol

The procedures and corresponding scores are:

- match - mismatch - deletion - match - match - match - insertion
- $1+0-1+1+1+1-1=2$

If we code moving as " Y ", not moving as " N ", we have:

| Seq 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Seq 2 | | Y | Y | Y | Y |
| :---: | :---: | :---: | :---: |
| Y | Y | Y | N |
| | Y | Y | Y |

In each time, we can only explore one possible alignment.

Matrix representation of pairwise sequence alignment

- Step-by-step alignment starts from top-left and ends at bottom-right.
- Each step is represented by moving from a cell to its adjacent cell.

Each step is represented by moving

from a cell to its adjacent cell

Three possible moving directions:

- (diagonal): Take a base from both seqs, i.e., a (mis)match.
- $\quad \downarrow$ (down): Take from Seq 1 but not Seq 2, i.e., a deletion.
- \rightarrow (right): Take from Seq 2 but not Seq 1, i.e., an insertion.

Each step is represented by moving

from a cell to its adjacent cell

Seq 2

Alignment is represented by the

 moving path
Seq 2

- Our goal is to find a path from top left to bottom right, which suffice...

Accumulative alignment scores are noted in the cells

- Start from the top left cell, with value 0 (because nothing has happened yet).
Scoring

Match	1
Mismatch	0
Gap	-1

Fill the first row with accumulative

gap costs

Fill the first column in the same way

- Each down arrow represents a deletion (with score -1).

	-	A	T	C	G	C	A
-	0	-1	-2	-3	-4	-5	-6
A	-1						
C	-2						
G	-3						
C	-4						
G	-5						
T	-6						

Now work on the matrix body

- Always from top / left to bottom / right.

-	0	-1	-2	-3	-4	-5	-6
A	-1						
C	-2						
G	-3						
C	-4						
G	-5						
T	-6						

There are three ways to move to this cell

Add the current score to the source cell

This step

Accumulative

Insertion (-1)
$-1-1=-2$

Match (+1)

$$
0+1=1
$$

- Which accumulative score is the largest?

Keep the maximum score from the

three directions

- Therefore we note the cell with the largest score (1) (from diagonal direction).

-	0	-1	-2	-3	-4	-5	-6
A	-1	1					
C	-2						
G	-3						
C	-4						
G	-5						
T	-6						

Let's try another one

- What will be the score of this cell (and from which direction)?

	0	-1	-2	-3	-4	-5	-6
A	-1	1					
	-2						
C	-2						
	-3						
G	-3						
	-4						
C							
	-5						
	-6						

Determine maximum score and direction in the same way

Therefore, this cell should be

- We will keep doing this until we fill the entire matrix.

-	0	-1	-2	-3	-4	-5	-6
A	-1		0				
C	-2						
G	-3						
C	-4						
G	-5						
T	-6						

Fill the entire matrix with scores and directions

- We will keep doing this until we fill the entire matrix.
- Note: For each cell, there could be one or two or three directions that achieve the same maximum score.

Now, we will determine which path gives the maximum overall score

Trace back through arrows until

 reaching top left- This is the path that represents the best alignment!
- In this case, the best alignment is:

There could be more than one best alignment (path)

It is practice time

- Alignment matrix
- Two sequences
- Scoring system

Seq 1
 ATCG

Seq 2

ATTCG

But I can't draw arrows in Excel!

- We need to find an Exeet computer-friendly way to handle the matrix.
- How about we use two matrices, one for scores and the other for directions?

		A	T	T	C	G
	0	-1	-2	-3	-4	-5
A	-1					
	-2					
	-3					
	-4					

Convert arrows into direction codes

In each cell, use letter code(s) to represent the source cell(s):

- \mathbf{L} (left to right), \mathbf{U} (upper to lower), \mathbf{D} (diagonal) (upper-left to lower-right)

	-	A	T	T	C	G
-		L	L	L	L	L
A	U	D	LD			
T	U	UD	D			
C	U					
G	U					

We can effectively work on the two matrices

Score matrix

	A		T	T	C	G
-	0	-1	-2	-3	-4	-5
A	-1					
T	-2					
C	-3					
G	-4					

Traceback matrix

- Now, let's get rolling!

Here is the outcome

Score matrix

	- A T T C G					
-	0	-1	-2	-3	-4	-5
A	-1	1	0	-1	-2	-3
T	-2	0	2	1	0	-1
C	-3	-1	1	2	2	1
G	-4	-2	0	1	2	3

	-	A	T	T	C	G
-		L	L	L	L	L
A	U	D	L	L	L	L
T	U	U	D	LD	L	L
C	U	U	U	D	D	L
G	U	U	U	UD	D	D

So the best alignment is (are) --

- Did you get these results?

Best 1

$$
\begin{array}{llll}
A T-C & G \\
A & T & C & C
\end{array}
$$

Best 2

$$
\begin{array}{lllll}
A & - & C & G \\
A & T & C & C & G
\end{array}
$$

Traceback matrix

What you just did is called the --

Needleman-Wunsch algorithm

- The inventors: Saul B.

Needleman and Christian
D. Wunsch (1970)

- It is an algorithm, not just an equation.

It aims to resolve a problem using computer

What is the N-W algorithm for?

Optimal global alignment

- Optimal: Find the alignment(s) that have the highest score.
- Global alignment: Align the entire sequences (not just parts of them).
- This is called an optimization problem (finding the best solution)

An algorithm resolves a problem using computer code

- It is a sequence of computerimplementable instructions (i.e., a program).
- It is well-defined, unambiguous and specific.
- It should be efficient (i.e., problem can be resolved in a reasonable amount of time using a reasonable amount of memory space)
- As compared to a mathematical equation.

Why the N-W algorithm has to be so complicated?

- Or if it's really complicated if you ask a computer?

Y	Y	Y	Y	Y	Y	N
Y	Y	N	Y	Y	Y	Y

	0						6
A	-1		0		-2		4
C	-2	0	1				-2
G	-3	-1	0	1			0
C	-4	-2	-1	1	1		2
G	-5	-3	-2	0	2	2	3
T	-6	-4	-3	-1	1	2	2

The naive method is prohibitively slo000000w

- Theoretically, we can generate ALL possible alignments, and determine the highest scored one, but...
- For each alignment site, there are three options: YY, YN, NY.
- So for an alignment of length n, there are roughly 3^{n} combinations, which is exponential.

Y	Y	Y	Y	Y	Y	N
Y	Y	N	Y	Y	Y	Y

- What if we have 1000 sites?

PS: the actual total number of possible alignments of two sequences of n and m bases is $(m+n)!/ m!^{*} n$!

Whereas the N-W algorithm only needs...

m

- There are a total of $n \times m$ cells to calculate.
- Which is quadratic (meaning "square")

-	0	-1	-2	-3	-4	-5	-6
A	-1						
C	-2						
G	-3						
C	-4						
G	-5						
T	-6						

A quadratic function grows slowly compared to an exponential one

- Therefore, a quadratic algorithm is usually much cheaper (i.e., more efficient) than an exponential algorithm, when the input size is beyond 1-2 digits.

Quadratic

Exponential

Both

Computational complexity: the big O notion

The N-W algorithm has:

- Time complexity: $O(n m)$
- Computer runtime to complete the calculation.
- Space complexity: $O(n m)$
- Computer memory needed during the calculation.

$=$| 0 | -1 | -2 | -3 | -4 | -5 | -6 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| -1 | | | | | | |
| -2 | | | | | | |
| -3 | | | | | | |
| -4 | | | | | | |
| -5 | | | | | | |
| -6 | | | | | | |

Why is the N-W algorithm so good?

- Because it breaks down the whole problem into multiple related, simpler sub-problems.
- Here sub-alignments (cells).
- Therefore, we only need to find the optimal solution for each sub-problem.
- Then we synchronize the sub-solutions to get the global optimal solution.
- This strategy is called dynamic programming.

Summary

- Matrix representation of pairwise alignment
- Needleman-Wunsch algorithm
- Computational complexity and dynamic programming

Next class
Python implementation of the
I
Faccess $\{$
display: inline-block;
height: 69 px ;
foat: right;
sargin: 1lpx
Eax-width: 800px; 0px Opx;
1
thertas ul $\{$
fint-size:
1fat-atyle: 13px;
Netintyle: none;

CWhate: 999. 0;
(Wat-ation: o999;
3

Whro
Nom
s. 9610

Needleman-Wunsch global alignment algorithm

